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Abstract This paper presents a canonical dual approach to minimizing the sum of a qua-
dratic function and the ratio of two quadratic functions, which is a type of non-convex opti-
mization problem subject to an elliptic constraint. We first relax the fractional structure by
introducing a family of parametric subproblems. Under proper conditions on the “problem-
defining” matrices associated with the three quadratic functions, we show that the canonical
dual of each subproblem becomes a one-dimensional concave maximization problem that
exhibits no duality gap. Since the infimum of the optima of the parameterized subproblems
leads to a solution to the original problem, we then derive some optimality conditions and
existence conditions for finding a global minimizer of the original problem. Some numer-
ical results using the quasi-Newton and line search methods are presented to illustrate our
approach.
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1 Introduction

We study in this paper the following quadratic fractional programming problem:

(P) : min

{
P0(x) = f (x) + g(x)

h(x)
: x ∈ X

}
(1)

where x = (x1, x2, . . . , xn)T ∈ R
n and

f (x) = 1

2
xT Qx − fT x, g(x) = 1

2
xT Gx, h(x) = 1

2
xT Hx − bT x,

with Q ∈ R
n×n being symmetric, G ∈ R

n×n symmetric positive semi-definite, H ∈ R
n×n

symmetric negative definite and f, b ∈ R
n . Assume that µ−1

0 = h(H−1b) > 0 and δ ∈
(0, µ−1

0 ], then the feasible domain X is defined to be

X = {x ∈ R
n | h(x) ≥ δ > 0},

which forms a constraint of elliptic type.
Problem (P) belongs to a class of “sum-of-ratios” problems that have been actively stud-

ied for several decades. The ratios often stand for efficiency measures representing perfor-
mance-to-cost, profit-to-revenue, return-to-risk, or signal-to-noise for numerous applications
in economics, transportation science, finance, engineering, etc. [1,6,10,16,18,19,27,30].
Depending on the nature of each application, the functions f, g, h can be affine, convex,
concave, or neither. However, even for the simplest case in which f, g, h are all affine func-
tions, problem (P) is still a global optimization problem that may have multiple local optima
[5,26]. In particular, Freund and Jarre [12] showed that the sum-of-ratios problem (P) is
NP-complete when f, g are convex and h is concave (Our setting fits this category.). Due to
computational complexity, most known algorithms work on the problems with linear-ratios
using the branch-and-bound approach [2–4,17,21], although there do exist some different
approaches [25,32]. Related work on nonlinear fractional programming can be referred to
[22–24].

Due to the non-convexity involved in the fractional structure, the ordinary Lagrangean
dual only provides a weak duality theorem that may bear a positive duality gap. Interestingly,
Scott and Jefferson [29] proposed a signomial dual [9,28] for the sum-of-affine-ratios prob-
lems. In their approach, the strong duality theorem holds but the weak duality theorem is
missing. Notice that the optimal solutions, when f, g, h are affine and linearly independent,
always lie on the boundary of the feasible region (see Craven [7]). In this paper, we are
motivated by this property to develop a canonical dual approach based on Gao and others’
work [11,13,31] for solving problem (P).

In Sect. 2, we first parameterize problem (P) into a family of subprograms {(Pµ)}, in
which each subproblem is a (possibly non-convex) quadratic program subject to one qua-
dratic constraint. Similar parametric idea can be found in [12,20] Then, we show the infimum
of the optima of the parameterized subproblems provides a solution to problem (P). Since
each subproblem (Pµ) may be a non-convex problem, a canonical dual problem (Pd

µ) is
derived. We provide some sufficient conditions to establish both the weak and strong duality
theorems (the so called perfect duality) for the pair of (Pµ)and(Pd

µ). In Sect. 3, we study
the topological properties of the feasible domain of the canonical dual problem and find
the domain is a one-dimensional ray that could be open or closed and whose boundary can
be characterized by the largest eigenvalue of a matrix composed of the problem-defining
matrices Q, G and H . Then we develop some existence conditions under which a global
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optimizer of the original problem (P) can indeed be identified by solving the corresponding
canonical dual problems. In Sect. 4, we provide two numerical examples. The first example
is a one-dimensional problem whose dual can be analytically solved to verify the correctness
of the proposed approach. The second one is a two-dimensional example which sheds some
lights on the numerical issues arising from the canonical dual. We show that a quasi-Newton
method with line search using the Armijo’s rule works efficiently.

2 Sufficiency for global optimality

In order to solve problem (P), consider the following family of parameterized subproblem:

(Pµ) : min

{
Pµ(x) = 1

2
xT Qx − fT x + µg(x) : x ∈ Xµ

}
, (2)

where µ ∈ [µ0, δ
−1] and

Xµ = {x ∈ R
n | h(x) ≥ µ−1 ≥ δ > 0}

is a convex set. We immediately have the following result:

Lemma 1 Problem (P) is equivalent to (Pµ) in the sense that

inf
x∈X

P0(x) = inf
µ∈[µ0,δ−1]

inf
x∈Xµ

Pµ(x). (3)

Proof It is easy to see that

inf
x∈X

P0(x)

= inf
x∈X

{
1

2
xT Qx − fT x + g(x)

h(x)

}

= inf
µ∈[µ0,δ−1]

inf
h(x)=µ−1

{
1

2
xT Qx − fT x + g(x)

h(x)

}

= inf
µ∈[µ0,δ−1]

inf
h(x)=µ−1

{
1

2
xT Qx − fT x + µg(x)

}

≥ inf
µ∈[µ0,δ−1]

inf
x∈Xµ

{
1

2
xT Qx − fT x + µg(x)

}

= inf
µ∈[µ0,δ−1]

inf
x∈Xµ

Pµ(x).

Conversely,

inf
µ∈[µ0,δ−1]

inf
x∈Xµ

{
1

2
xT Qx − fT x + µg(x)

}

= inf
µ∈[µ0,δ−1]

inf
h(x)≥µ−1

{
1

2
xT Qx − fT x + µg(x)

}

≥ inf
µ∈[µ0,δ−1]

inf
h(x)≥µ−1

{
1

2
xT Qx − fT x + g(x)

h(x)

}
(since g(x) ≥ 0)

= inf
x∈X

P0(x).

This completes the proof of the lemma. ��
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Now, for any given µ ∈ [µ0, δ
−1], we define

Gµ(σ ) = Q + µG − σ H, for σ ≥ 0, (4)

S+
µ = {σ ≥ 0 | Gµ(σ ) � 0}, (5)

Pd
µ(σ ) = σ

µ
− 1

2
(f − σb)T G−1

µ (σ )(f − σb), (6)

where ‘�’ means positive definiteness of a matrix. In the following we let ∂S+
µ denote the

boundary of S+
µ , det Gµ(σ ) be the determinant of the matrix Gµ(σ ) and σmax represent the

maximum root of the equation defined by det Gµ(σ ) = 0. Then we have the following
topological properties of S+

µ .

Lemma 2 Given any µ ∈ [µ0, δ
−1], then

(a) Gµ(σ ) � 0 as σ becomes large enough;
(b) S+

µ is a ray in R
1;

(c) ∂S+
µ = {σ ∈ R

1|σ = max{0, σmax }}.

Proof (a) Since −H is positive definite, there exists γ > 0 such that −H − γ I � 0 with I
being an identity matrix. Notice that when σ is large enough, the matrix Q +µG +σγ I
is diagonally dominant with positive diagonal elements. From [8], we know it is positive
definite. Consequently, Gµ(σ ) is positive definite as σ becomes large enough.

(b) Assume that σ̄ ∈ S+
µ , then Q + µG − σ̄ H � 0. Hence for any σ > σ̄ ≥ 0, Q + µG −

σ H = (Q + µG − σ̄ H) + (σ − σ̄ )(−H) � 0. This means S+
µ is a ray.

(c) Since H is symmetric negative definite, we can write −H = L LT such that L is lower
triangular with positive diagonal elements. In this way, we have

Gµ(σ ) = L(B + σ I )LT , (7)

where B = L−1(Q + µG)(L−1)T . It is easy to see that

Gµ � 0 ⇐⇒ B + σ I � 0 (8)

and

det Gµ(σ ) = 0 ⇐⇒ det(B + σ I ) = 0. (9)

It follows from (9) that if σ1 ≥ σ2 ≥ · · · ≥ σn are the roots of det Gµ(σ ) = 0, then they are
the eigenvalues of the matrix −B. Therefore, σ −σ1 ≤ σ −σ2 ≤ · · · ≤ σ −σn are the eigen-
values of the matrix B +σ I . By (8), we know that the smallest eigenvalue σ −σ1 of B +σ I
is positive if and only if Gµ(σ ) is positive definite. Consequently, when σ1 < 0, the matrix
Gµ(σ ) must be positive definite for σ ≥ 0. In this case, ∂S+

µ = {0}. On the other hand, if
σ1 > 0, then the maximum root σmax = σ1 becomes the boundary point of S+

µ . ��

Lemma 3 For any given µ ∈ [µ0, δ
−1], the canonical dual function Pd

µ(σ ) is concave and

C1 continuous with a decreasing derivative over S+
µ .

Proof By direct calculation, we have

d

dσ
Pd

µ(σ ) = 1

µ
− x(σ )T

(
1

2
Hx(σ ) − b

)
(10)
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and

d2

dσ 2 Pd
µ(σ ) = −(Hx(σ )T − b)T G−1

µ (σ )(Hx(σ )T − b), (11)

where x(σ ) = G−1
µ (σ )(f − σb). It is obvious that d2

dσ 2 Pd
µ(σ ) ≤ 0 provided that Gµ(σ ) is

positive definite. This completes the proof. ��
Given any µ ∈ [µ0, δ

−1], consider the following canonical dual problem (Pd
µ):

(Pd
µ) sup

{
Pd

µ(σ ) : σ ∈ S+
µ

}
.

Theorem 1 (Weak Duality) If there exists a global maximizer σµ of Pd
µ(σ ) over S+

µ , then
the vector

xµ = G−1
µ (σµ)(f − σµb) (12)

is a global minimizer of (Pµ) over Xµ and

Pd
µ(σ ) ≤ Pµ(x), ∀ (x, σ ) ∈ Xµ × S+

µ . (13)

Proof Let �(·) : R
n → R be the so-called geometrical transformation (see [13–15]) defined

by

y = �(x) = µ−1 + bT x − 1

2
xT Hx (14)

and let

V (y) =
{

0 if y ≤ 0;
+∞ otherwise,

(15)

whose conjugate function is

V �(σ ) =
{

0 if σ ≥ 0;
+∞ otherwise.

Then, Problem (Pµ) in (2) can be written as the following unconstrained optimization prob-
lem

min

{
P(x) = V (�(x)) + 1

2
xT Qx − fT x + µ

2
xT Gx | x ∈ R

n
}

. (16)

Following [15], we define the so-called “total complementary function” as

�(x, σ ) = �(x)T σ − V �(σ ) + 1

2
xT Qx − fT x + µ

2
xT Gx (17)

for x ∈ R
n and σ ∈ S+

µ . Since V �(σ ) = 0 when σ ≥ 0 and �(x) can be substituted by (14),
the total complementary function can be simplified as

�(x, σ ) = σ

µ
+ 1

2
xT (Gµ(σ ))x − (f − σb)T x, (18)

where Gµ(σ ) is defined in (4). Note that �(x, σ ) is convex in x ∈ R
n for any given σ ∈ S+

µ

and affine (hence concave) in σ for any given x ∈ R
n . Therefore, for each σ ∈ S+

µ , the
criticality condition

∂�

∂x
= Gµ(σ )x − (f − σb) = 0 (19)

leads to the global minimizer x(σ ) = G−1
µ (σ )(f−σb) of �(x, σ ) with respect to x. Moreover,
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min
x∈Rn

�(x, σ ) = �(x(σ ), σ )

= σ

µ
+ 1

2
x(σ )T (Gµ(σ ))x(σ ) − (f − σb)T x(σ )

= σ

µ
+ 1

2
x(σ )T (f − σb) − (f − σb)T x(σ )

= σ

µ
− 1

2
(f − σb)T x(σ )

= σ

µ
− 1

2
(f − σb)T (Gµ(σ ))−1(f − σb)

= Pd
µ(σ ).

By the assumption, σµ is a global maximizer of Pd
µ(σ ) over S+

µ . If σµ is an interior of

S+
µ , then d

dσ
Pd

µ(σµ) = 0. Otherwise, we have σµ = max{0, σmax} and d
dσ

Pd
µ(σµ) ≤ 0.

In either case, if we denote xµ = x(σµ) = G−1
µ (σµ)(f − σµb), it follows from (10) that

1
µ

− xT
µ( 1

2 Hxµ − b) ≤ 0. Namely, xµ ∈ Xµ. Therefore, for any σ ∈ S+
µ we have

Pd
µ(σ ) ≤ Pd

µ(σµ)

= min
x∈Rn

�(x, σµ)

= �(xµ, σµ)

= min
x∈Xµ

�(x, σµ)

≤ �(x)T σ − V �(σ ) + 1

2
xT Qx − fT x + µ

2
xT Gx, ∀x ∈ Xµ

≤ Pµ(x), ∀x ∈ Xµ.

The last inequality comes from the fact that �(x) ≤ 0, σ ≥ 0, and V �(σ ) = 0 when
(x, σ ) ∈ Xµ × S+

µ . This completes the proof. ��
Theorem 2 (Strong Duality) If σµ is a critical point of Pd

µ(σ ) over S+
µ , then (Pd

µ) is perfectly
dual to (Pµ) in the sense that the vector

xµ = G−1
µ (σµ)(f − σµb) (20)

is a global minimizer of (Pµ), σµ is a global maximizer of (Pd
µ) and

min
x∈Xµ

Pµ(x) = Pµ(xµ) = Pd
µ(σµ) = max

σ∈S+
µ

Pd
µ(σ ). (21)

Proof The proof basically follows that of the weak duality Theorem 1. The only difference
lies in the assumption that σµ is a critical point of Pd

µ(σ ) over S+
µ . In this case, d

dσ
Pd

µ(σµ) = 0.

Consequently, xµ = x(σµ) = G−1
µ (σµ)(f − σµb) is on the boundary of X , i.e., xµ ∈ ∂Xµ.

Hence �(xµ) = 0 and it further implies that

Pd
µ(σµ) = �(xµ, σµ) = Pµ(xµ).

Then Eq. 21 follows naturally. ��
The above results immediately lead to the following sufficient condition for finding the

global optimizer of problem (P):
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Corollary 1 (Sufficiency) If there exists a critical point σµ ∈ S+
µ for every µ ∈ [µ0, δ

−1],
then

min
x∈X

P0(x) = min
µ∈[µ0,δ−1]

Pd
µ(σµ). (22)

3 Existence of global optimality

Recall that σmax is the maximum root of det Gµ(σ ) = 0. It can be found by using the power
method or QR methods. Once it is calculated, we know S+

µ is a one dimensional (open or
closed) ray starting from σmax or 0 toward infinity. The next result provides an easy-to-check
condition for the existence of a global optimal solution σµ to problem (Pd

µ) over S+
µ with

any given µ ∈ [µ0, δ
−1].

Theorem 3 (Existence) Given any µ ∈ [µ0, δ
−1], if

lim
σ(∈S+

µ )→∂S+
µ

d Pd
µ(σ )

dσ
> 0 (23)

and

lim
σ→∞

d Pd
µ(σ )

dσ
< 0, (24)

then the canonical dual problem (Pd
µ) has at least one global optimal solution σµ ∈ S+

µ .

Proof Since
d Pd

µ(σ )

dσ
is continuous and decreasing over S+

µ , it follows from (23) and (24) that
there exists one σµ ∈ S+

µ to be a critical point of Pd
µ(σ ). By Theorem 2, we know σµ is a

global optimal solution of (Pd
µ). ��

The existence condition in Theorem 3 actually implies that σµ lies in the interior of S+
µ .

We may extend our results to the situation that the point σµ lies on the boundary ∂S+
µ , i.e.,

lim
σ(∈S+

µ )→∂S+
µ

d Pd
µ(σ )

dσ
= 0. (25)

There are two possible cases for this to happen. Case 1: when σmax < 0, then ∂S+
µ =

{0} and det Gµ(0) > 0. In other words, σµ = 0 ∈ S+
µ is a global optimal solution of (Pd

µ).
Case 2: when σmax ≥ 0, then the set S+

µ may become open and condition (25) leads to a
critical point that does not lie in S+

µ . We thus would like to sharpen the result of Theorem 2
as follows.

Lemma 4 Let σ1 ≥ σ2 ≥ · · · ≥ σs, i = 1, 2, . . . , s, be the distinct roots of det Gµ(σ ) =
0 and Ii be the identical matrix with its dimensionality being the multiplicity of σi . Then,
there exists a non-singular matrix N such that NHN T = −I and

Gµ(σ ) = N−1�(σ)(N−1)T , (26)

where �(σ) = σ I + Diag (−σ1 I1,−σ2 I2, . . . ,−σs Is).
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Proof From (7), we know Gµ(σ ) can be decomposed as

Gµ(σ ) = L(B + σ I )LT ,

where L is lower triangular with −H = L LT and B = L−1(Q + µG)(L−1)T . Since B is
symmetric, we can further diagonalize B by

B = MT (Diag (−σ1 I1,−σ2 I2, . . . ,−σs Is))M,

where M is orthogonal. Simply choose N = M L−1, the rest of the proof follows. ��
Keep the notation used in Lemma 4 and assume that r1 is the multiplicity of the root

σmax = σ1. Then we have the next result.

Theorem 4 If ∂S+
µ = {σ1} with σ1 ≥ 0 and

lim
σ(∈S+

µ )→σ+
1

d Pd
µ(σ )

dσ
= 0, (27)

then σ1 defines a global minimizer x̄ of problem (Pµ) such that

x̄ = lim
σ(∈S+

µ )→σ+
1

G−1
µ (σ )(f − σb). (28)

Proof Denote

d(σ ) = (d1(σ ), d2(σ ), . . . , dn(σ ))T = N (f − σb). (29)

For σ ∈ S+
µ , by (10) we know

d Pd
µ(σ )

dσ
= 1

µ
− 1

2
(f − σb)T G−1

µ (σ )H G−1
µ (σ )(f − σb) + bT G−1

µ (σ )(f − σb)

= 1

µ
−1

2
(N (f−σb))T�(σ)−1 NHN T�(σ)−1 N (f−σb)+(Nb)T �(σ)−1 N (f−σb)

= 1

µ
+ 1

2
d(σ )T �(σ)−2d(σ ) + (Nb)T �(σ)−1d(σ )

= 1

µ
+ 1

2

d2
1 (σ ) + d2

2 (σ ) + · · · + d2
r1

(σ )

(σ − σ1)2 + 1

2
dn−r1(σ )T �n−r1(σ )−2dn−r1(σ )

+ t1d1(σ ) + t2d2(σ ) + · · · + tr1 dr1(σ )

σ − σ1
+ tT

n−r1
�n−r1(σ )−1dn−r1(σ )

= 1

µ
+ 1

2

r1∑
k=1

[(
dk(σ )

σ − σ1
+ tk

)2

− t2
k

]
+ 1

2
dn−r1(σ )T �n−r1(σ )−2dn−r1(σ )

+tT
n−r1

�n−r1(σ )−1dn−r1(σ )

where t = Nb and dn−r1(σ ),�n−r1(σ ), tn−r1 represent the last n − r1 elements of d(σ ),

�(σ), and t, respectively. As σ → σ1, the vector d(σ ) converges to N (f − σ1b). However,
condition (27) enforces that d1(σ ), d2(σ ), . . . , dr1(σ ) converge to 0 no slower than (σ −σ1)

does. Otherwise,
d Pd

µ(σ )

dσ
would tend to positive infinity. Consequently, each of

ȳi � lim
σ(∈S+

µ )→σ+
1

di (σ )

σ − σ1
, 1 ≤ i ≤ r1

exists with a finite value.
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A unique solution of (ȳr1+1, . . . , ȳn)T is then determined by
⎛
⎜⎜⎜⎜⎝

(σ1 − σ2) I2 . . . . . . 0
... (σ1 − σ3) I3

...
...

. . .
...

0 . . . . . . (σ1 − σs) Is

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ȳr1+1

ȳr1+2
...

ȳn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

dr1+1(σ1)

dr1+2(σ1)
...

dn(σ1).

⎞
⎟⎟⎟⎠ (30)

Now

lim
σ(∈S+

µ )→σ+
1

G−1
µ (σ )(f − σb)

= NT(ȳ1, . . . , ȳr1 , ȳr1+1, . . . , ȳn)
T, (31)

exists to be a finite vector. Thus we can define

x̄ � lim
σ(∈S+

µ )→σ+
1

G−1
µ (σ )(f − σb),

and rewrite (27) as

1

µ
− 1

2
x̄T H x̄ + bT x̄ = 0.

This shows x̄ is a primal feasible solution that resides on the boundary of Xµ.

Let S+
µ be the closure of S+

µ and define extensively the total complementarity function as

�̂(x, σ ) = σ

µ
+ 1

2
xT (Gµ(σ ))x − (f − σb)T x, (32)

for x ∈ R
n and σ ∈ S+

µ . Since Gµ(σ1) is positive semi-definite, �̂(x, σ ) must be convex in

x ∈ R
n for each σ ∈ S+

µ . Taking partial derivatives at (x̄, σ1), we have

∂

∂x
�̂(x̄, σ1) = Gµ(σ1)x̄ − (f − σ1b)

= lim
σ(∈S+

µ )→σ+
1

Gµ(σ )x̄ − (f − σ1b)

= lim
σ(∈S+

µ )→σ+
1

(f − σb) − (f − σ1b)

= 0.

Consequently,

�̂(x̄, σ1) = min
x∈Rn

�̂(x, σ1)

= min
x∈Xµ

�̂(x, σ1)

≤ �(x)T σ1 − V �(σ1) + 1

2
xT Qx − fT x + µ

2
xT Gx, ∀x ∈ Xµ

≤ Pµ(x), ∀x ∈ Xµ.

Since x̄ is on the boundary of Xµ and σ1 is assumed to be non-negative, we have

�̂(x̄, σ1) = Pµ(x̄) ≤ Pµ(x), ∀x ∈ Xµ. (33)

This proves the theorem. ��
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Theorem 5 Assume that ∂S+
µ = {σ1} with σ1 ≥ 0 and

lim
σ(∈S+

µ )→σ+
1

d Pd
µ(σ )

dσ
= 0.

If we further define

Pd
µ(σ1) = σ1

µ
− 1

2
(f − σ1b)T x̄, (34)

then Pd
µ(σ ) is right continuous at σ1 and attains its maximum over S+

µ at σ1. In this case,

Pd
µ(σ ) ≤ Pµ(x), ∀x ∈ Xµ and σ ∈ S+

µ . (35)

Proof From (6), for each σ ∈ S+
µ , we have

Pd
µ(σ ) = σ

µ
− 1

2
(f − σb)T G−1

µ (σ )(f − σb).

Moreover,

lim
σ(∈S+

µ )→σ+
1

Pd
µ(σ ) = σ

µ
− 1

2
(f − σb)T x̄

= Pd
µ(σ1).

This shows that Pd
µ(σ1) as defined in (34) makes the function Pd

µ(σ ) right continuous at σ1.

Since
d Pd

µ(σ )

dσ
is decreasing (Lemma 3) and limσ→σ+

1

d Pd
µ(σ )

dσ
= 0, we know

d Pd
µ(σ )

dσ
≤ 0.

Hence, Pd
µ(σ ) is decreasing over S+

µ . The right continuity of Pd
µ(σ ) at σ1 further ensures

that σ1 must be the global maximum of Pd
µ(σ ) over S+

µ .
Now, from (32), we have

�̂(x̄, σ1) = σ1

µ
+ 1

2
x̄T (Gµ(σ1))x̄ − (f − σ1b)T x̄

= σ1

µ
+ 1

2
x̄T lim

σ→σ+
1

Gµ(σ ) lim
σ→σ+

1

G−1
µ (σ )(f − σb) − (f − σ1b)T x̄

= σ1

µ
+ 1

2
x̄T (f − σ1b) − (f − σ1b)T x̄

= Pd
µ(σ1)

≤ Pµ(x), ∀x ∈ Xµ. (by (33))

This completes the proof. ��
With Theorem 4 and 5, the existence condition of Theorem 3 can be generalized as

lim
σ(∈S+

µ )→∂S+
µ

d Pd
µ(σ )

dσ
≥ 0

and

lim
σ→∞

d Pd
µ(σ )

dσ
< 0.
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In this case, we may find an optimal solution

σµ ∈ ∂S+
µ with

d Pd
µ(σµ)

dσ
= 0, det Gµ(σµ) = 0 and Gµ(σµ) � 0.

The following existence condition for global optimizers of the original problem then comes
naturally:

Theorem 6 If

lim
σ(∈S+

µ )→∂S+
µ

d Pd
µ(σ )

dσ
≥ 0 and lim

σ→∞
d Pd

µ(σ )

dσ
< 0 (36)

hold for every µ ∈ [µ0, δ
−1], then

min
x∈X

P0(x) = min
µ∈[µ0,δ−1]

Pd
µ(σµ).

4 Numerical examples

Example 1 Let us begin with a simple one-dimensional example by taking Q = −10, f =
1, G = 1, H = −1, b = 1 and δ = 0.01 to form a specific problem:

min P0(x) = −5x2 − x + 0.5x2

−0.5x2 − x

over the feasible domain

χ = {x ∈ R| − 0.5x2 − x ≥ 0.01} = {−1.9899 ≤ x ≤ −0.01005}.
The objective function P0(x) has a singularity at −2 and it is neither convex nor concave

over χ . (See Fig. 1 for the graph of P0(x).)
By Lemma 1, we have minx∈X P0(x) = minµ∈[2,100] minx∈Xµ Pµ(x) with

Pµ(x) = 1

2
xT Qx − xT f + µg(x)

= (−5 + 0.5µ)x2 − x

and χµ = {−1 − √
1 − 2µ−1 ≤ x ≤ −1 + √

1 − 2µ−1}. Directly minimizing Pµ(x) could
be difficult. For example, if µ ∈ [2, 10), Pµ(x) is concave so that we are facing a family
of less desirable concave minimization problems. Contrarily, each canonical dual functional
Pd

µ(σ ) of Pµ(x) is concave over S+
µ . Therefore, for each µ ∈ [2, 100], we are to maximize

Pd
µ(σ ) = σ

µ
− 1

2
( f − σb)t G−1

µ (σ )( f − σb)

= σ

µ
− (1 − σ)2

2(−10 + µ + σ)

over S+
µ = {σ | σ > max{0, 10 − µ}}. The derivative of Pd

µ(σ ) becomes

d

dσ
Pd

µ(σ ) = 1

µ
+ 1

2

(
1 − σ

−10 + µ + σ

)2

+ 1 − σ

−10 + µ + σ
.
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Fig. 1 Graph of P0(x) for Example 1

It is obvious that

lim
σ→∞

d

dσ
Pd

µ(σ ) = 1

µ
+ 1

2
− 1 = 1

µ
− 1

2
< 0 for µ > 2.

Hence the condition (24) is satisfied for µ > 2. On the other hand,

lim
σ→∂S+

µ

d

dσ
Pd

µ(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

∞, if µ ∈ [2, 9), ∂S+
µ = {10 − µ};

−7
18 , if µ = 9, ∂S+

µ = {1};
∞, if µ ∈ (9, 10], ∂S+

µ = {10 − µ};
1
µ

+ 1
2 ( 1

µ−10 )2 + 1
µ−10 > 0, if µ ∈ (10, 100], ∂S+

µ = {0}.
This implies that condition (23) holds except for µ = 9. By Theorem 3, the maximizer

σµ of Pd
µ(σ ) for each µ ∈ [2, 100] \ {2, 9} exists. We can then implement a simple Newton

method to locate σµ and define Pd(µ) = Pd
µ(σµ). Figure 2 shows the graph of Pd

µ(σµ)

in terms of µ. It has three local minima at µ = 2, µ = 3.3825 and µ = 100, respec-
tively, and one global maximum at µ = 9 which is a cusp of Pd(µ). Finally, we minimize
Pd(µ) over µ ∈ [2, 100] using the line search with Armijo’s rule (to be further described in
Example 2 below) to obtain the global minimum at µ = 3.3825 whose corresponding primal
solution is x = −1.6393.

Example 2 We consider a two-dimensional problem with

Q =
[−1 6

6 5

]
, G =

[
5 1
1 2

]
, H =

[−7 3
3 −2

]
, f =

[−8
2

]
, b =

[
5
3

]
.

The constraint set X = {x ∈ R
n | h(x) ≥ δ = 0.01} is an ellipse together with all its

interior. This example is a non-convex global optimization problem subject to an elliptic
constraint. Since µ−1

0 = h(H−1b) = 20.3, we consider the parametric programs Pµ(x) and
its canonical dual functional pd

µ(σ ) for µ ∈ [0.04926, 100].
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Fig. 2 Graph of Pd (µ) for Example 1

To verify Theorem 3, we first factorize −H = L LT with

L =
[√

7 0
−3/

√
7

√
5/

√
7

]
.

Then we use Matlab symbolic calculation to find the largest eigenvalue of −L−1(Q +
µG)(L−1)T as

−6.9 − 3µ + 0.1
√

5581 + 3920µ + 720µ2 for µ ∈ [0.04926, 100],
from which we can compute the boundary of S+

µ as

∂S+
µ =

{ {−6.9 − 3µ + 0.1
√

5581 + 3920µ + 720µ2}, if µ ∈ [0.04926, 1.609);
{0}, if µ ∈ [1.609, 100].

and

lim
σ→∂S+

µ

d

dσ
Pd

µ(σ ) =
⎧⎨
⎩

∞, if µ ∈ [0.04926, 1.609);
≥ 0, if µ ∈ [1.609, 10.659];
< 0, if µ ∈ (10.659, 100].

To check condition (24), we recall from the beginning of the proof for Theorem 4 that

d Pd
µ(σ )

dσ
= 1

µ
+ 1

2
d(σ )T �(σ)−2d(σ ) + (Nb)T �(σ)−1d(σ )

and hence

lim
σ→∞

d Pd
µ(σ )

dσ
= 1

µ
+ 1

2
(Nb)T (Nb) − (Nb)T (Nb)

= 1

µ
− 1

2
‖Nb‖2.

123



350 J Glob Optim (2009) 45:337–353

We can verify that

−20.29 ≤ 1

µ
− 1

2
‖Nb‖2 ≤ −13.6 for µ ∈ [0.04926, 100]

and thus condition (24) is met. From the above calculation, we have the strong duality on
µ ∈ [0.04926, 10.659] since there is a critical point inside S+

µ . We have, however, only the
weak duality on µ ∈ (10.659, 100] since the global maximizer of Pd

µ(σ ) occurs at σµ = 0

but limσ→0+ d
dσ

Pd
µ(σ ) < 0. From Theorem 1 and 2, if we define

Pd(µ) =
{

Pd
µ(σµ), for µ ∈ [0.04926, 10.659];

Pd
µ(0), for µ ∈ (10.659, 100],

then Pd(µ) ≤ Pµ(xµ) with the equality sign being valid only on µ ∈ [0.04926, 10.659] (See
Fig. 3 for the graph of Pd(µ).). What we can do is to minimize with respect to µ the lower
bound function Pd(µ) of Pµ(xµ). If the minimizer µ∗ resides luckily in [0.04926, 10.659]
(which is the case for this example), then we solve the master problem (P). Otherwise, we
only obtain a lower bound value of (P). Nevertheless, to numerically minimize Pd(µ), we
need to address a few issues as follows.

Although Pd
µ(σ ) is concave for each µ ∈ [0.04926, 100], some of them have a very

large “flat” region so that the Newton method may fail to converge. For example, when
µ = 0.9593, S+

µ = {σ ≥ 0 | Gµ(σ ) � 0} = {σ > 0.2242}. The optimal solution for maxi-

mizing Pd
0.9593(σ ) over {σ > 0.2242} is σµ = 1.47 (See Fig. 4 for the graph of Pd

0.9593(σ ).).
Such a function could cause numerical difficulty for the pure Newton method, should we not
start from an initial solution close to σµ = 1.47.

We can, however, introduce a quadratic penalty term to the function Pd
µ(σ ) as follows:

P̂d
µ(σ ) = σ/µ − 1

2
(f − σb)T G−1

µ (σ )(f − σb) − γ

2
σ 2

0 20 40 60 80 100
−20

0

20

40

60

80

100

Fig. 3 Graph of Pd (µ) for Example 2
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Fig. 4 Graph of Pd
0.9593(σ ) for

Example 2
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where γ > 0 is the penalty parameter to be reduced to 0 gradually. This will bend the flat
region of Pd

µ(σ ) for easier maximization numerically.
To minimize Pd(µ) over µ ∈ [µ0, δ

−1], we use the line search with the Armijo’s rule and
thus it is not necessary to solve σµ for each µ. Suppose the current iterate is at µk ∈ [µ0, δ

−1],
we may approximate the derivative of Pd(µ) at µ = µk by

dk = d

dµ
Pd(µ)|µ=µk

.= Pd(µk + ε) − Pd(µk)

ε

where ε > 0 is a selected parameter and the two terms in the numerator can be evaluated by
the quasi-Newton method. If dk > 0, the full step size s can be taken as the distance from
the left boundary to µk , i.e., s = µ0 − µk . Otherwise, we take s = δ−1 − µk from the other
end. Then, we select two parameters such that parameter α is close to 0 for scaling the slope
dk and parameter β ∈ (0, 1) for scaling the full step size s. Let the test point tn be defined as

tn = µk + (βns)(αdk)

and choose m to be the first non-negative integer such that

m = min{n ≥ 0 | Pd(tn) < Pd(µk) + (βns)(αdk)}.
Then, we can update

µk+1 = µk + (βms)(αdk)

and repeat until dk is nearly 0.
In our example, we use β = 2/3, α = 0.001 and ε = 0.01. It took only 6 times of line

search to reach the global minimum of Pd
µ(σµ) at µ = 0.69076 with a value of −7.0766.

A total of 22 function evaluations including those used to find the search direction dk and
by the Armijo’s rule are required. As a result, it took only 1.0615 cpu seconds to reach the
optimal solution for this example, compared to 82.84 seconds taken by applying the grid
method (with a grid size of 0.01).
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5 Concluding remarks

The sum-of-ratios problems are considered to be difficult. In this paper, we study a special
class of basic sum-of-ration problems in quadratic form and hope the results can lead to
better understanding of fractional programming. We first parameterize such a problem into
a family of subproblems. Then we develop a corresponding canonical duality theory, both
in weak and strong duality form, to handle each subproblem. Based on the properties of
the subproblems, we provide not only the extremality conditions for global optimality of
the original problem, but also some easily checkable existence conditions to assure that the
global optimal solutions of a subclass of quadratic sum-of-rations problems can indeed be
found by solving a sequence of concave maximization problems.
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